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Abstract—This paper considers the problem of predicting

self-similar traffic with a significant number of pulsations and

the property of long-term dependence, using various spline

functions. The research work focused on the process of mod-

eling self-similar traffic handled in a mobile network. A spline-

extrapolation method based on various spline functions (lin-

ear, cubic and cubic B-splines) is proposed to predict self-

similar traffic outside the period of time in which packet data

transmission occurs. Extrapolation of traffic for short- and

long-term forecasts is considered. Comparison of the results

of the prediction of self-similar traffic using various spline

functions has shown that the accuracy of the forecast can be

improved through the use of cubic B-splines. The results al-

low to conclude that it is advisable to use spline extrapolation

in predicting self-similar traffic, thereby recommending this

method for use in practice in solving traffic prediction-related

problems.

Keywords—quality of service, self-similar traffic, spline func-

tions, error of recovery.

1. Introduction

The development of fifth-generation 5G/NR (New Radio)

mobile communication networks is associated with the

rapid growth in the number of high-speed services of-

fered to users. These include enhanced Mobile Broadband

(eMBB) access, massive Machine Type Communications

(mMTC) and Ultra-reliable and Low Latency Communica-

tions (URLLC), as defined in the recommendations of the

3GPP technical report 38.913 [1], [2]. These services re-

quire increased data transmission speeds and quality of ser-

vice levels, perceived as an optimal combination of packet

delay time, packet loss probability and throughput. The

main difficulty in solving this problem consists in signif-

icant and frequent bursts of intensity, which appear to be

statistically similar at different time scales. This property

allows us to predict the occurrence of this condition in the

future, based on the accumulated statistical data or based on

the results of traffic modeling [3]–[6]. In practice, the ap-

pearance of a significant number of long-term traffic inten-

sity ripples at arbitrary points in time often leads to a sharp

increase in packet delay time, which causes overloading of

network nodes and buffer devices and, accordingly, has

a significant impact on traffic.

Predicting self-similar traffic will enable to handle the po-

tential peak loads in the network and to manage traffic in an

efficient manner, thereby ensuring the required QoS. Given

the above facts, the urgency of the problem of predicting

self-similar traffic is obvious.

The purpose of the work is to solve the problem of predict-

ing self-similar traffic and choosing the method by which

traffic will be restored more precisely beyond the limits of

its determining time intervals.

2. Problem Statement

Function extrapolation is a continuation of a function out-

side its domain of definition, in which the continued func-

tion belongs to a given class. Extrapolation is usually per-

formed using formulas that rely on information about the

function’s behavior at a certain set of points (extrapolation

nodes) belonging to its domain of definition [7]. Some-

times, when extrapolating functions, not the entire domain

of definition is used. Instead, only a part of it is taken

into consideration. In fact, extrapolation of the values of

judgment of a given function over a specific portion thereof

is performed. In this case, extrapolation formulas give, in

particular, the values of the function at the corresponding

points of its domain of definition. This method is often

used when solving practical problems, when there is no

sufficient information available that is necessary to deter-

mine the values outside the considered part of the function’s

domain of definition [7].

A properly selected forecasting method allows to obtain

predictions about the availability of the necessary band-

width and delay time for managing network peak loads.

The prediction results will help the operator perform traffic

management functions, thereby ensuring the required QoS

levels [8].

The prediction problems solved by the authors of the past

were based on the extrapolation of random processes, per-

formed using the Lagrange interpolation multi-members,

Chebyshev polynomials, etc. Some prediction-related is-

sues are considered in [9]–[11], where numerical methods
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of Hermite interpolation, as well as trigonometric inter-

polation and Richardson extrapolation were used. These

methods allow solving the forecasting problem with a given

level of accuracy. However, the proposed forecasting meth-

ods are not universal.

There is no single method for predicting the characteristics

of self-similar traffic that would enable real-time prediction

of self-similar traffic behaviors, giving the mobile operator

the opportunity to take timely measures to prevent network

node overloads, and to avoid the corresponding effects of

these changes on QoS.

An extrapolation method based on spline functions, which

has a number of advantages compared to its already known

counterparts, offers the following features [5]:

• splines are more resistant to local perturbations, that

is, the behavior of the spline in the vicinity of a point

does not affect the behavior of the spline as a whole,

as is the case in polynomial interpolation,

• good convergence of spline interpolation in contrast

to the polynomial. In particular, for functions with

irregular smoothness properties (for example, self-

similar traffic) spline interpolation is indisputably

high.

Let us consider spline-extrapolation of self-similar traffic,

modeled with the use of the Matlab Simulink package for

a given set of initial data, using various spline functions

(linear, cubic, and B-splines). Spline functions of odd de-

grees (linear, cubic, cubic B-splines) are used in this paper

due to their properties of the minimum norm and the best

approximation. This allows to obtain more accurate results

in terms of convergence [12].

3. Related Work

A significant number of scientific papers [13]–[19] is de-

voted to traffic forecasting issues. Their authors propose

various forecasting methods. The classical approach to

forecasting traffic characteristics is used in [13], where

a comparison of various methods, such as the method

based on a polynomial extrapolation of Lagrange, Markov

chains and the method of automatic and trainees show

the feasibility of using an extrapolation method in pre-

dicting self-similar traffic. One of the generally accepted

traffic prediction mechanisms has the form of linear re-

gression models, such as Autoregressive Integrated Moving

Average (ARIMA) and Fractal Autoregressive Integrated

Moving Average (FARIMA), as considered in [4]–[16].

These are used only for short-term forecasts, when solv-

ing traffic control and network performance problems.

However, their use is based on an accurate estimate of

the Hurst parameter which, when predicting traffic in real-

time, is fairly difficult to estimate. Therefore, the use of

ARIMA and FARIMA models is possible only for traffic

with a slight degree of self-similarity.

The neural network prediction method, as discussed in

a number of papers, for example in [17], [18], allows to

solve a number of practical forecasting problems, such as

dynamic bandwidth redistribution, in order to make the

optimal use of available network resources and to main-

tain QoS.

However, it is important to note that the use of the neu-

ral network method implies the need for network training.

This is a complex and time-consuming process, and even

a trained network is not always clearly predictable due to

heuristic approaches to training design.

The forecast accuracy in such a network depends on the

number of options for its training. The implementation

re-quires high computing capabilities. In [19], the results

of a comparison of network traffic predictions made using

linear regression models and SARIMA neural networks are

shown, indicating that in most cases the use of compli-

cated and labor-intensive techniques of neural networks is

impractical.

The methods of extrapolation [9]–[11], [13]–[19] are labor-

intensive and suffer from considerable errors under con-

ditions of frequent traffic intensity bursts. It should be

noted that they are complex when forecasting in real time.

Solving the problem of extrapolation by cubic splines or

their piece-wise polynomial representation in many cases

is a convenient tool, both for solving theoretical problems

and for calculating the terms. However, in a number of

applications, it is more efficient to represent cubic splines

via B-splines.

Therefore, the development of effective methods of predic-

tion of self-similar traffic, reducing the computational com-

plexity and, thus, providing solutions for networks with

significant bandwidths, is an important task.

4. Method of Self-Similar Traffic

Prediction

Consider self-similar traffic affecting segment [a;b]. Let

partition ∆: a = x0, x1, . . . , xN = b be given in interval

[a;b]. The first-degree spline S1(x) on grid ∆ is a continu-

ous piece-wise linear function. Let ∆ grid points be given

the values of self-similar traffic fi = f (xi), which describes

function f (x), defined for interval [a;b]. The interpolation

spline is defined by [5], [6], [20]:

S1(xi) = fi , i = 0, . . . , N . (1)

Geometrically, it is a broken line passing through the points

(xi,yi), where yi = f (xi), denoted by hi = xi+1 − xi. Then,

according to [20], for x ∈ [xi, xi+1], i = 0, . . . , N − 1, the

linear spline will have the following form:

S1(xi) = fi
xi+1 − x

hi
+ fi+1

x− xi

hi
, (2)

or

S1(xi) = fi
x− xi

hi

(

fi+1 − fi
)

. (3)
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The authors will also consider a cubic interpolation spline

S3(x), constructed similarly to the linear spline, with

the only difference being that this is a cubic function

on each interval [xi,xi+1], i = 1, . . . , N − 1. According

to [5], [6], [20], for x ∈ [xi, xi+1], i = 0, 1, . . . , N − 1 the

cubic spline is:

S3(x) = fi(1− t)2(1+2t)+ fi+1 t2(3−2t)

+mihit(1− t)2−mi+1hi t2(1− t) , (4)

where t = x−xi
hi

, S3(xi)= fi, S3(xi+1)= fi+1, mi =S′( f ;xi),

or

S3(x) = fi(1− t)+(1+2t)+ fi+1t − h2
i

6
(1− t)

[

(2− t)Mi

+(1+ t)Mi+1
]

, (5)

where S′′(xi) = Mi, S′′(xi+1) = Mi+1.

The boundary conditions are used to determine the cubic

spline of the Eq. (4) in the interval [a; b] [5], [6], [20]:

S′( f ;a) = f ′(a), S′( f ;b) = f ′(b) . (6)

For determining a cubic spline type given by Eq. (5), the

boundary conditions of the form [5] is used:

S′′( f ;a) = f ′′(a), S′′( f ;b) = f ′′(b) . (7)

Consider a uniform partition of interval [a; b], then:

hi = h =
b−a

N
, i = 0, 1, . . . , N −1 .

Let us construct a cubic B-spline, different from zero in the

interval (xi−2, xi+2). B-splines of odd degrees are conve-

niently numbered by the middle node of their carrier inter-

vals. The desired B-spline will be denoted by Bi(x). Setting

yp = Bi(xp), Mp = B′′
i (xp) for Bi(x) we have [20], [21]:

µpMp−1 +2Mp +λpMp+1

=
6

hp−1 +hp

(

yp+1− yp

hp
− yp − yp−1

hp−1

)

, (8)

where p = i−1, i, i+1, µi =
hi−1

hi−1+hi
, λi = 1−µi.

As Bi(x) = 0 for x /∈ [xi−2, xi+2], then:

B(r)
i (xi−1) = B(r)

i (xx+2) = 0 , r = 0, 1, 2 . (9)

Taking into account the fact that the B-spline has a ra-

tio [20], [21]:

Bi(x) = yi(1− t)+ yi+1 t − h2
i

6
t(1− t)

×
[

(2− t)Mi +(1+ t)Mi+1
]

, (10)

where x ∈ [xi, xi+1], t = x−xi
hi

, hi = xi+1 − xi,

we get:

B′′
i (x) =

yi+1 − yi

hi

− hi

6
[

(2−6t +3t2)Mi +(1−3t2)Mi+1
]

, (11)

B′′
i (x) = Mi(1− t)+Mi+1 t . (12)

Then, condition (9), due to Eqs. (10)–(12), may be repre-

sented by:







yi−2 = yi+2 = 0, Mi−2 = Mi+2 = 0,

yi−1 =
1
6

h2
i−2Mi−1, yi+1 =

1
6

h2
i+1Mi+1

. (13)

The parameters found in Eq. (13) are excluded from Eq. (8),

which will lead to [20], [21]:











(hi−2 +hi−1)(hi−2 +2hi−1)Mi−1 +h2
i−1Mi = 6yi,

(hi−2 +hi−1)Mi−1+(hi−1 +hi)Mi +(hi +hi+1)Mi+1 = 0,

h2
i Mi(hi +hi+1)(2hi +hi+1)Mi+1 = 6hi .

(14)

The result is a system of three equations for finding four

parameters: yi, Mi−1, Mi, Mi+1.

Assuming:

yi =
hi−1(hi−2+hi−1)(2hi+hi+1)+hi(hi+hi+1)(hi−2+2hi−1)

(hi−1 +hi)(hi−2 +hi−1 +hi)(hi−1 +hi +hi+1)
,

(15)

from the Eq. (14) we get:



























Mi−1 =
6

(hi−2 +hi−1(hi−2 +hi−1 +hi)
,

Mi =
6
[

(hi−2 +hi−1 +hi)
−1 +(hi−1 +hi +hi+1)

−1]

hi−1 +hi
,

Mi+1 −
6

(hi +hi+1)(hi−1 +hi +hi+1)
.

(16)

Equations (13), (15), (16) determine the spline Bi(x) in the

interval [xi−2, xi+2].
It is necessary to restore self-similar traffic outside the in-

terval [a; b], namely, to the right of the point b. For defi-

niteness, let this be a point xc, xc > xN = b, xc − b = h,

where h is a step partition of the interval [a; b].

Fig. 1. Extrapolation of self-similar traffic on the interval [a;b]R
on condition f (xc) = f (x1).
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Let us now consider short-term and long-term predictions

of the characteristics of self-similar traffic using spline ex-

trapolation.

First, a spline function (linear, cubic, or cubic B-spline)

on the segment [b; xc] is constructed with the assumption

that f (xc) = f (x1). Next, we construct a linear or cubic

spline or a cubic B-spline, respectively, on the segment

[b; xc] (Fig. 1). Then, on the segment [b; xc], a short-term

forecast of self-similar traffic is obtained.

In the second case (Fig. 2), the set f (xk) = f (xc), with xk =
x0 + kh, where k is natural, is considered. If kh 6= xc − b,

then for f (xc) we take the values of function f (x) which

are closest to the point xk.

Fig. 2. Extrapolation of self-similar traffic on the interval [a; b]
on condition f (xkh) = f (xc).

According to [20], the error of restoring self-similar traffic

on the interval [b; xc], using the following theorems may be

found.

If a spline of the first degree S1(x) interpolates a continuous

function f (x) on the grid ∆, then the estimation of the error

is valid:
∣

∣S1(x)− f (x)
∣

∣ ≤ ω(f) , (17)

where ω(f) – module of a continuous function of the form.

ω(f)= max
0≤i≤N−1

ω(f)′= max
0≤i≤N−1

max
x′,x′′∈[xi,xi+1]

∣

∣ f (x′′)− f (x′)
∣

∣ .

(18)

If the spline cubic S3(x) interpolates the continuous func-

tion f (x) on the net ∆ and satisfies the boundary conditions

(6) or (7), then:

∥

∥S(x)− f (x)
∥

∥

C ≤
(

1+
3
4

ρ
)

ω(f) , (19)

where:

ρ = maxi hi
mini hi

,
∥

∥ f (x)
∥

∥

C = max
x∈[a,b]

| f (x)|,

C = C[a; b] – the function is continuous on the interval

[a; b].

Let us find the error of extrapolation of self-similar traffic

using cubic B-splines. The interpolation cubic spline S(x)
can be found using its B-spline representation [20]:

S(x) =
N+1

∑
i=−1

biBi(x) . (20)

The quality of the interpolation function is characterized as

R(x) = S(x)− f (x) and it depends on differential properties

of the interpolated function f (x).
Consider a spline satisfying the condition:

S( f ; xi) = fi , i = 0, 1, . . . , N , . (21)

with a boundary:

S′( f ; a) = f ′(a), S′( f ; b) = f ′(b) . (22)

To determine the coefficients bi, the system of equations is

obtained by [20], [21]:










b−1B′
−1(x0)+b0B′

0(x0)+b1B′
1(x0)− f ′0,

bi−1Bi−1(x1)+b1B1(x1)+bi+1Bi+1(x1) = fi,

bN−1B′
N−1(xN)+bNB′

N(xN)+bN+1B′
N+1(xN) = f ′ ,

(23)

wherei = 0, . . . , N.

In the periodic case the Eqs. (17) describing the problem

of extrapolation, are:

bi−1Bi−1(x1)+biBi(xi)+bi+1Bi+1(xi) = fi, i = 1, . . . , N .
(24)

In matrix form, this can be written as:

Ab = f , (25)

where b = (b1, . . . , bN)T , f = ( f1, . . . , fN)T denotes trans-

position.

The error of extrapolation of self-similar traffic is calculated

using Eq. (18)

A(b− f ) = f −A f . (26)

Consider the space C[a; b] to be continuous on [a; b], such

as:
∥

∥ f (x)
∥

∥

C[a,b]
= max

x∈[a,b]
| f (x)| .

On the grid ∆ : a = x0 < x1 < .. . < xN = b, these functions

are characterized by their oscillation on segment [xi, xi+1]:

ωi( f ) = max
x′,x′′∈[xi,xi+1]

∣

∣ f (x′′)− f (x′)
∣

∣ ,

and:

ω( f ) = max
0≤i≤N−1

ωi( f ) .

If the characteristic of the function is independent of the

grid ∆, there is the modulus of ω( f ;h), which is defined

as [20]:

ωi( f ;h) = max
x′,x′′∈[a,b]
|x′′−x′|≤h

∣

∣ f (x′′)− f (x′)
∣

∣, h ≤ b−a .

If h = max
i

hi, then the following inequalities are:

ωi( f ) ≤ ω( f ) ≤ ω( f ;h) .

Then

∥

∥ f −A f
∥

∥ = max
i

∣

∣ fi− fi−1Bi−1(xi)− fiBi(xi)− fi+1Bi+1(xi)
∣

∣

≤max
i

{

Bi−1(xi)
∣

∣ fi− fi−1
∣

∣+Bi+1(xi)
∣

∣ fi− fi+1
∣

∣

}

≤ω( f ) .
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Using the property of normalized B-splines ∑
i

Bi(x) = 1 and

the Eq. (19) we have:

‖b− f‖≤ ‖A−1‖ω( f ) , (27)

and

‖S(x)− f (x)‖=

∣

∣

∣

∣

N+1

∑
i=−1

[

bi − f (x)
]

Bi(x)
∣

∣

∣

∣

≤
∣

∣

∣

∣

N+1

∑
i=−1

[

bi − fi
]

Bi(x)
∣

∣

∣

∣

+

∣

∣

∣

∣

N+1

∑
i=−1

[

fi − f (x)
]

Bi(x)
∣

∣

∣

∣

.

Using Eq. (20), the results are obtained by:

∣

∣

∣

∣

N+1

∑
i=−1

[

bi − fi
]

Bi(x)
∣

∣

∣

∣

≤
∥

∥b− f
∥

∥≤
∥

∥A−1∥
∥ω( f ) .

In addition, for any x ∈ [xi, xi+1], i = 0, 1, . . . , N

∣

∣

∣

∣

N+1

∑
i=−1

[

fi− f (x)
]

Bi(x)
∣

∣

∣

∣

≤
i+2

∑
p=i−1

∣

∣ fp− f (x)
∣

∣bp(x) ≤ 2ω( f ) .

Finally

∣

∣

∣
S(x)− f (x)

∣

∣

∣
≤

(

2+
∥

∥A−1∥
∥

)

ω( f ) . (28)

According to [20], the matrix A will be ill-conditioned if

ρ ≥ 3+
√

5
2 , then it is advisable to use a grid with a partition

step for which ρ < 3+
√

5
2 .

5. Simulations

The spline-extrapolation method described in this paper is

used for high-speed video and voice traffic, which are de-

scribed by the Weibull distribution [3]. The problem con-

cerned may be modeled by other distributions, for example

- the Pareto distribution. However, it describes data traffic

only.

The authors simulate self-similar traffic for the queuing sys-

tem (QS) WB/M/1/K on a 3000–4000 ms segment, where:

• λ is intensity of packet arrival for servicing in the

QS, λ = 150 packet per second,

• µ is packet service duration, µ = 125 packet/s,

– κ is length of the packet queue, κ = 200 pack-

ets,

– Hurst parameter H = 0.75,

– Weibull distribution parameters are α ≈ 0.5 and

β ≈ 17.321.

Self-similar traffic simulation results obtained in the

Simulink package of the Matlab environment for specific

initial data are shown in Fig. 3, where n is the number of

packets, t is time of arrival of packets [5], [6].

According to Fig. 3, it can be seen that for the self-similar

traffic obtained on the 3000–4000 ms segment, there is

large-scale invariance, a significant amount of “bursts” of

traffic intensity and a long-term relationship between the

moments of their arrival.

Next, consider the extrapolation of traffic on the interval of

[3800; 3850] ms and compare it with the results of modeling

self-similar traffic.

Fig. 3. The results of modeling self-similar traffic.

Using a linear spline for simulated self-similar traffic on the

3800–3850 ms segment, extrapolation of traffic is obtained,

which is shown in Fig. 4.

Fig. 4. The results of extrapolating self-similar traffic on the

3800–3850 ms segment using the linear spline function: 1 – self-

similar traffic, 2 – extrapolation of self-similar traffic using the

linear spline function.

The error in recovering self-similar traffic based on a linear

spline will be evaluated according to Eqs. (17)–(18). The

calculation results are shown in Table 1.

It is easy to see that the use of linear spline functions is

linked with the presence of a significant error, which most

often appears on segments where graphs of traffic intensity

have periodic “bursts”. It should be noted that the studies

were conducted using a small segment of 3800–3850 ms,

with step h = 1. The split step increase will inevitably lead

to an increase in the values of extrapolation error. From

this, it follows that the use of spline extrapolations based on

linear splines to predict self-similar traffic with significant

and frequent bursts of intensity is impractical.

However, during the experiment, self-similar traffic with

the Hurst coefficient H=0.75 was used, possibly for self-

similar traffic with a lower self-similarity value using linear

splines. This assumption will be considered in future work.

12
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Table 1

The error of recovery of self-similar traffic

based on a linear spline

Interval Interval time [ms] Error value

[x0; x1] 3800–3801 0.01

[x1; x2] 3801–3802 2.5

[x2; x3] 3802–3803 73.3

[x3; x4] 3803–3804 4.1

. . . . . . . . .

[x10; x11] 3810–3811 248.2

[x11; x12] 3811–3812 335.53

[x12; x13] 3812–3813 11.1

[x13; x14] 3813–3814 0.1

. . . . . . . . .

Using the cubic spline for simulated self-similar traffic

on the 3800–3850 ms segment, extrapolation of traffic

is obtained, as shown in Fig. 5. The error in recovering

self-similar traffic using a cubic spline will be estimated

using Eq. (19). The calculation results are summarized in

Table 2.

Fig. 5. Extrapolated self-similar traffic on the 3800–3850 ms

segment using cubic spline functions: 1 – self-similar traffic, 2 –

extrapolation of self-similar traffic using a cubic spline function.

According to the results of the extrapolation of self-similar

traffic on the 3800–3850 ms segment using the cubic spline

function shown in Fig. 5, the recovery errors are obtained

on the segments of the graph, where the traffic intensity

has “spikes” at peak points. In general, the use of cubic

splines allows you to perform a short-term forecast of traf-

fic parameters and get the predicted “route” of self-similar

traffic.

It is possible to increase the accuracy of prediction of traffic

characteristics using the spline-extrapolation method based

on cubic B-splines. It is known that B-splines have a lo-

cal character and in their construction several values are

used on the considered segments. Therefore, they make it

possible to obtain better results compared to cubic splines,

the coefficients of which are calculated as a function over

the entire domain of the initial function, in this case, at the

given interval of 3800–3850 ms.

Table 2

Accuracy of recovery of self-similar traffic

based on cubic spline

Interval Interval time [ms] Error value

[x0; x1] 3800–3801 4.6

[x1; x2] 3801–3802 0.15

[x2; x3] 3802–3803 2.44

[x3; x4] 3803–3804 1.46

. . . . . . . . .

[x10; x11] 3810–3811 0.12

[x11; x12] 3811–3812 2.1

[x12; x13] 3812–3813 10.6

[x13; x14] 3813–3814 70.5

. . . . . . . . .

Consider the following spline extrapolation for simulated

self-similar traffic on the 3800–3850 ms segment using cu-

bic B-spline (Fig. 6).

Fig. 6. Extrapolated self-similar traffic on the 3800–3850 ms

segment using cubic B-spline functions: 1 – self-similar traffic,

2 – extrapolation of self-similar traffic using a cubic B-spline

function.

Let us find the error values of the extrapolation of self–

similar traffic using Eq. (21). The calculation results are

shown in Table 3.

The use of cubic B-splines allows to reduce the error rate

compared with the use of linear and cubic splines. Ac-

cording to the results of extrapolation of self-similar traffic

on the 3800–3850 ms segment using the cubic B-splines

shown in Fig. 6, the error of extrapolation is even negligi-

ble on the segment’s “bursts” of traffic intensity.

In general, the use of cubic B-splines allows to perform

a short-term forecast of traffic parameters and to almost

completely restore the “route” of self-similar traffic.

Let us compare the recovery of self-similar traffic using

a linear, cubic, and cubic B-spline, as shown in Fig. 7. The

research conducted shows that for the self-similar traffic

considered, the use of cubic B-splines is most appropriate.

The spline extrapolation method can be used to predict

traffic characteristics in real time for short-term forecasts,

and long-term forecasts that are based on a large amount

of data.
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Fig. 7. Comparison of extrapolation results of self-similar traffic using linear, cubic and cubic B-spline on the 3800–3850 ms segment:

1 – self-similar traffic, 2 – extrapolation of self-similar traffic using linear spline function, 3 – extrapolation of self-similar traffic using

cubic spline function, 4 – extrapolation of self-similar traffic using cubic B-spline function.

Table 3

The error of recovery of self-similar traffic based on cubic

B-spline

Interval Interval time [ms] Error value

[x0; x1] 3800–3801 0.002

[x1; x2] 3801–3802 0.046

[x2; x3] 3802–3803 0.551

[x3; x4] 3803–3804 0.005

. . . . . . . . .

[x10; x11] 3810–3811 0.016

[x11; x12] 3811–3812 0.005

[x12; x13] 3812–3813 0.850

[x13; x14] 3813–3814 0.006

. . . . . . . . .

Short-term traffic forecast is usually associated with the

ability to predict traffic characteristics in real time, in order

to dynamically allocate network resources depending on

traffic behavior, i.e. intensity bursts.

The results of such a forecasting approach allow to improve

the network’s QoS and to perform the optimal allocation

of resources.

The long-term traffic forecast allows to obtain results that

are based on a large amount of data, for example to choose

the size of the buffer devices on the network nodes and to

provide for the length of the packet queue in these devices

when designing the network.

6. Conclusions

The proposed extrapolation method based on spline func-

tions, has a number of advantages in comparison with the

known methods. It is quite simple to implement, has a low

error rate, and can also be used to control traffic in real

time.

The practical significance of the results obtained is that the

prediction of self-similar traffic will provide for the required

amount of buffer devices, thereby avoiding overloads in the

network and exceeding the standard QoS values.

Based on the results of traffic forecasting taking into ac-

count the maximum workloads of network nodes, practical

recommendations can be given on traffic redistribution over

IP networks, for example, the operation of TCP/IP proto-

col. Reduction of the delay, compared with TCP, allows

to use a protocol without the guaranteed delivery of User

Datagram Protocol (UDP). However, it is rather difficult

to provide the required QoS using the UDP/TCP transport

protocol only, since the reasons of the delays exist mostly

at the network level [22]. Use of the proposed spline ex-

trapolation method allows to perform a prediction of traffic

characteristics, balance the load of network elements and

improve the efficiency of network equipment.

Future research will need to focus on further improvement

of traffic prediction accuracy, by developing the wavelet-

extrapolation method based on wavelet functions.
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